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Abstract
This paper describes a novel methodology for the
identification of mechanical systems and structures from
vibration response measurements. It combines prior
information, observational data and predictive finite element
models to produce configurations and system parameter
values that are most consistent with the available data and
model. Bayesian inference and a Metropolis simulation algo-
rithm form the basis for this approach. The resulting process
enables the estimation of distributions of both individual pa-
rameters and system-wide states. Attractive features of this
approach include its ability to: 1) provide quantitative
measures of the uncertainty of a generated estimate; 2)
function effectively when exposed to degraded conditions
including: noisy data, incomplete data sets and model
misspecification; 3) allow alternative estimates to be
produced and compared, and 4) incrementally update initial
estimates and analysis as more data becomes available. A
series of test cases based on a simple fixed-free cantilever
beam is presented. These results demonstrate that the
algorithm is able to identify the system, based on the
stiffness matrix, given applied force and resultant nodal
displacements. Moreover, it effectively identifies locations on
the beam where damage (represented by a change in elastic
modulus) was specified.

Introduction
Computational simulations are used to model physical
processes in order to predict the behavior or characterize the
nature of a given system. To do this they must be consistent
with both physical laws and observational data. Acquired
data can be integrated into a simulation after inverting the
system model (also referred to as the forward model) and
identifying the system parameters. The solution to this
inversion problem yields the system state which then can be
used to predict system behavior. The inversion problem is
complicated by issues regarding non-linearity, state-space
dimensionality, under/over determined systems, noisy and
dependent data, etc.  Hence, a strict inversion is rarely pos-
sible. In fact, without appealing to unrealistic simplifying
assumptions, the severity of these issues often makes
classical optimization algorithms ineffective at estimating
(i.e., inverting) those system parameters which most
consistently correspond to the observed data and the
forward model. Moreover, conventional solutions provide

little insight into the degree of uncertainty associated with the
inversion result.

This work describes an effort to develop and validate a
system identification and characterization algorithm that
incorporates vibration signature measurements, numerical
simulation models of mechanical and structural systems, and
a-priori system knowledge to provide an optimal system
representation of the actual structure. The solution approach
is based upon a general inference paradigm called the
Stochastic Engine (SE) [1,2]. This new methodology
combines disparate types of observational data and process
simulations to produce a consolidated body of knowledge
indicating those configurations and system parameter values
which are most consistent with the available data and
models (i.e., system identification). Bayesian inference and a
Metropolis simulation algorithm form the basis for the
approach. The resulting procedure enables the estimation of
distributions of both individual parameters and system-wide
states, and their likelihood of occurrence. Since a posterior
distribution on the state space is produced, this approach is
capable of yielding quantitative measures of the uncertainty
of the generated estimates. This provides the basis for: i) the
objective assessment of competing estimates when the
available information isn’t sufficient to definitively identify the
system state, and ii) the propagation of uncertainty in
modeling results through to follow-on predictions.

This class of models has the added advantage of being able
to follow a system through its lifetime as it changes or ages.
Specifically, vibration based signatures of an existing
mechanical or structural system can be periodically
incorporated into the previous simulation design model to
reflect incremental physical change in the actual system.
The resulting model can then be compared to the original
design model to identify any physical changes in the actual
system. For example, these changes may be due to an
earthquake which can damage a building, or repeated
takeoffs and landings which can fatigue an airframe over
time. A critical characteristic of the methodology is its
robustness to variety of types of information degradation.
Both noise degraded and missing data are considered.

Stochastic Engine Methodology
The Stochastic Engine combines simulations with
observations using Bayesian inference that is realized



through a Markov Chain Monte Carlo (MCMC) sampling
algorithm. This is accomplished by using the generated
samples to estimate a posterior probability distribution
indicating those configurations of the system which are most
consistent (i.e., most probable) with the existing data and
models.

The method begins with the synthesis of a “base
representation” of system configurations (i.e., states) and the
specification of a prior distribution, _, defined across these
states. A search algorithm, employing a form of importance
sampling, is used to efficiently traverse the state space. For
each visited state, forward simulators are used to predict
values of measurable parameters that are then compared to
corresponding measurements to determine the likelihood
that the given state produced the observed data. These
comparisons drive an MCMC algorithm which effectively
estimates the posterior distribution over the state space. This
information allows one to determine those system
configurations that are closest to the true (but unknown)
state of nature. Unlike classical inversion techniques that
generate a single best-case deterministic solution, this
method produces a posterior probability distribution defined
over the range of possible solutions - a stochastic inversion
of the system of interest. This facilitates post-processing
decision analysis and needs-based experimental planning.
Moreover, due to its forward processing scheme (i.e., the
simulators are all forward models), the methodology is
generally applicable to highly non-linear, poorly constrained,
multi-dimensional problems.

This methodology places a prior distribution, _, on the set of
all possible configurations. Specifically, a Markov chain, P, is
constructed with transition probabilities between states such
that its limiting distribution is the prior, _. In statistical terms,
P samples _. This sampling process is then modified to
account for the likelihood of the observed data. The result is
a new Markov chain, R, which samples the posterior
distribution, __

It should be noted that the Engine includes all available data,
model information and inherent error in the system to
produce probability distributions identifying likely system
configurations or behavior, and quantifying the potential
improvement provided by new data. Even when conventional
inversion and analysis methods are able to address complex
problems, they provide only a single “best” answer, throwing
away much of the information and precluding other likely
possibilities. On the other hand, the SE allows continuous
integration of new data into the analysis, improving
understanding and reducing uncertainty.

A Simple Forward Model: Fixed-Free Cantilever Beam
As an illustrative example, we apply the Engine to the
simplest of mechanical models: a fixed-free cantilever beam.
The SE algorithm is used to identify the configuration of the
beam in terms of its stiffness. The uniform, linearly elastic
cantilever beam has n equal, homogeneous beam-type
elements. We allow each element to have an elastic
modulus that is one of three types: (i) type 0 (nominal), (ii)
type 1 (abnormal), and (iii) type 2 (abnormal).

Type 0 represents the nominal stiffness of an “unflawed”
beam of the given construction. If there exists defects within

the beam, it is represented by an element with a type 1 or
type 2 elastic modulus. Since each element has one of three
possible elastic moduli, and there are a total of n elements, it
follows that there are a total of 3n possible states, or
configurations, of the beam, of which exactly one represents
an unflawed beam; the remaining 3n - 1 configurations
characterize a beam with at least one flawed element. In the
results presented here, we consider the case of n = 10
elements.

We will also restrict the number of possible configurations by
assuming that there are at most two flawed elements
present in the beam at any one time. As a consequence, the
number of possible configurations is reduced from 3n to 1 +
2n + 4n(n - 1)/2 = 2n2 + 1. For n = 10, this is a reduction from
59049 to 201. This restriction is a matter of convenience: to
facilitate a short simulation run time and thereby allow a
large number of investigative examples.

Static forces applied at selected nodes are specified as the
input to the system. The resulting nodal deflections are taken
to be the observed output. In the examples, the beam is
restricted to two-dimensional, in-plane motion. The static
forces are applied normal to the beam in the in-plane
direction. Therefore, the displacement at a node has
dimensionality d = 2, corresponding to a vertical component
and an angular (twisting) component. A sequence of m = 3
independent static forces are applied for a given experiment.
The equation of motion for the jth force applied to a beam
having configuration i is

K X F( ) ( )i
j

i
j

0 = ,       (1)

where K(i) is the nd x nd stiffness matrix determined by the
aggregated attributes of the combination of flawed and
unflawed elements which comprise the ith configuration, and

X j
i0( )

 is the nd x 1 theoretical (i.e., mean) displacement

vector induced by the nd x 1 applied force vector Fj. The
configuration, i, is identified by the number, location(s), and
type(s) of flawed elements.

To implement a particular simulation, an actual configuration
of the beam is specified, denoted i = i*. Specific force vectors
Fj are assumed, and simulated vectors of measured

displacements X j
i( *)

 are generated based on the equations

of motion and a well defined noise model,

X K Fj
i i
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−
,       (2)
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i

jt
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jt
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For simplicity of notation we define the displacement data,

D Xj j
i= ( *)

.       (4)

Here Zj denotes a random vector of independent standard
normal variates, and _ > 0 is a parameter. Thus, the
measured (i.e., noisy) displacements vary from their
theoretical means in a proportional and component-wise



independent and identically distributed fashion. Moreover, _
has an easy interpretation: it is the coefficient of variation
(i.e., ratio of the standard deviation to the mean) for each
displacement component.

Markov Chain Parameterization. We begin by describing
our a priori knowledge of the sample space of all possible
configurations. For our simple model, we will assume there
can be no more than 2 flawed elements. There are therefore
N = 2n2 + 1 different configurations, of which:  (i) 1 consists
of no flaws (“level 0”), (ii) 2n consist of one flaw (“level 1”),
and (iii) 2n(n - 1) consist of two flaws (“level 2”). Let us
assign total prior probability _q to level q:

_0 + _1  + _2  =1,  0 < _q < 1.       (5)

For example, by setting each _q equal to 1/3 we would be
assuming we have no a priori knowledge to favor any one of
the flaw levels. If we use _0  = 0.1, _1  = 0.8, _2  = 0.1, we
would be assuming a particular prior belief that favors the
existence of a single flaw. The prior distribution puts
probability at each possible configuration. For simplicity we
will assume the probability is spread uniformly within each
flaw level. Hence,

π λ0 0= _

π λ
i n= 1

2 _ for each configuration i in level 1

π λ
i n n= −

2

2 1( ) _ for each configuration i in level 2.   (6)

In real applications there may be justification for apportioning
prior probability unevenly among configurations within a
level, but in our example we will assume uniformity.

We want to construct a Markov chain P = (pij) which samples
_. The chain starts at some state and moves from state to
state according to transition probabilities pij, where

p p i N j Nij
j

N

ij
=
∑ = ≤ < ≤ ≤ ≤ ≤

1

1 0 1 1 1, , , ,       (7)

and N = 2n2 + 1 is the total number of states. If Yt denotes
the state at time t then we say the chain has limiting
distribution _ if

lim |t t jP Y j Y i→∞ = =( ) =0 π   for any  (j, i).                 (8)

Once a P is constructed to sample _, the MCMC algorithm
can be applied to use the likelihood of the observed data to
modify P to produce a new chain R which  samples _. In our
example the data would consist of measured displacements
at selected nodes. The likelihood, Li, of the data assuming a
given configuration i is the joint probability density function of
the measurements for this configuration.

We will use a special case of the MCMC methodology
popularized by Mosegaard [3,4]. Its validity requires the
chain P to be reversible, i.e.,

π πi ij j jip p=   for all  i, j.       (9)

The chain R = (r ij)  defines the Mosegaard transition
probabilities as follows

r p j iij ij

L

L
j

i
= ( ) ≠min , ,1

r rii ij
j i

= −
≠

∑1                   (10)

The chain R makes its transitions based on proposals from
the prior sampling chain P. It accepts the proposed state
with certainty if the likelihood of the data for the proposed
state is greater than that of the current state. If however the
likelihood of the proposed state is less, it accepts the
proposed state with probability equal to the ratio of the
likelihoods, and remains at the current state with probability
one minus this ratio. In this way the chain samples the
posterior distribution, moving from state to state based upon
relative likelihood and prior assumptions, and lingering in the
neighborhoods of states having high likelihood.

Our goal, then, is to construct a reversible Markov chain P
with limiting distribution equaling the prior _, i.e., a chain
which satisfies equation (9). We are motivated by the
general strategy to concentrate prior transition probabilities P
on neighboring states, so that the posterior chain R tends to
explore states within a close range, moving somewhat
slowly, almost methodically, and toward modes of the
limiting distribution _. In this spirit we use the following
general transition rules for P:

•  transitions from level 0 to level 1: each state in level 1 is
an equally likely destination

•  transitions within level 1: can keep location but change
type, or retain type but change location to either
adjacent position (wrapping around to the opposite end
of the beam if necessary)

•  transitions from level 1 to level 2: keep level 1 type and
location, and add an extra (location, type) at random
among the 2(n – 1) possibilities

•  transitions within level 2: keep flaw locations and
change one of the types, or keep one (location, type) at
random and choose a new (location, type) at random
among the 2(n – 2) possibilities

•  transitions from level 1 to level 2: keep one (location,
type)

•  transitions from level 0 to level 2: do not allow
•  transitions from level 2 to level 0: do not allow

To be precise, define

a P transition from level q to level rqr = ( )
θq P type only change within level q= ( )     (11)

and

p a00 00= , where the state with no flaws has index 0

p j
a
n0

1
2

00= −
 for each state j in level 1

p ai0 10=  for each state i in level 1

p aij = 11 1θ  for each type only change within level 1



p aij = −
11

1
2

1θ
 for each location shift within level 1

pij
a
n= −
12

2 1( )  for each allowable transition from level 1 to

level 2

p aij = 22
1

2 2θ  for each type only change within level 2

p aij n= −
−22

1
4 2

2θ
( )  for each allowable transition within level 2

which introduces a new (location, type)

pij
a= 21

2  for each allowable transition from level 2 to level

1.                                                                                       (12)

We have imposed the following constraints by construction:

a qqr
r

∑ = =1 0 1 2, , ,

a a02 20 0= = .                   (13)

The reversibility requirements (9) impose the following
additional constraints.

1 1 01

0 00 00− < < ≥λ
λ a and a ,

1 1 01

2 22 22− < < ≥λ
λ a and a ,

a a a11 00 221 1 1 00

1

2

1
= − − − − ≥λ

λ
λ
λ( ) ( ) .         (14)

The Likelihood Function. Recall that our example model
fixes a particular configuration i* as the actual configuration
that yields the observed displacement data. We assume that
the identity of i* is unknown, although generally restricted to
one among the N = 2n2 + 1 possible configurations with up to
two flaws, and proceed to use MCMC to sample the
posterior distribution over these possibilities. The algorithm
continually makes likelihood comparisons between the
current and proposed configurations to direct the exploration
of the state space.

The likelihood Li of configuration i is a measure of the
plausibility of the data under the assumption that the actual
configuration is i. The normal independent multiplicative
error model (3) gives the expression,

L D Xi X
t
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j

m

X
jt jt

i

jt
i

jt
i

= − −[ ]
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2

0 2

0 0 2σ π σ
( ) ( )

exp ( )
,

        (15)

where X K Fj
i i

j
0 1( ) ( )= [ ] −

 denotes the theoretical (mean)

displacement vector for a beam with configuration i
subjected to force vector Fj.

Example Simulations. We have applied the Stochastic
Engine to a number of scenarios involving the single
cantilever beam, and have been able to explore a variety of
topics including:

•  sampling of the posterior
•  noise in the data

•  selection of the prior
•  missing data

In subsequent sections, we will describe our efforts to study
each of these areas including the models and tests,
simulation results and corresponding insights.

Sampling of the Posterior. The objective is to characterize
the posterior distribution, _ defined on the collection of
possible configurations. Because we have an analytical
expression for _, we may compare it to sampled versions of _
obtained by our implementation of the Engine’s MCMC
methodology and thereby affirm its accuracy. Indeed our
simulations have demonstrated that we are properly
sampling the posterior. We have typically used simulations
of 10 million Markov chain steps, following a burn-in period
of 10 thousand steps conducted to “forget” the starting
configuration. Without exception we have observed
consistent agreement of four significant figures between the
simulated relative frequencies and the corresponding
theoretical posterior probabilities.

Noise in the Data and Selection of the Prior. The ability of
the Engine to ascertain the true identity of the underlying
configuration depends primarily on the degree of variation in
the observed measurements relative to the theoretical
values predicted by the equations of motion. This variation,
or noise, is characterized in our modeling approach by the
scalar parameter, _, defined in the independent multiplicative
error model of equation (3). This parameter is effectively the
reciprocal “signal to noise ratio”, so that a value of _ = 0.10
implies that the standard deviation of the measured
displacement for a given component is 10% of the
theoretical (mean) displacement as given by the equations of
motion (1). The smaller _ is, the closer the measurements
tend to resemble the theoretical values, with complete
concurrence assured at the limiting case _ = 0. The
parameter _ is propagated in the likelihood function (15) and
becomes a major player in defining the posterior distribution
_, as well as the Engine’s exploration of the posterior by rule
(10). In effect, the noise parameter _ and the prior
distribution _ compete in characterizing the posterior
distribution. If _ is sufficiently small, the observed data will
dominate all prior considerations and result in the entire
posterior probability being placed upon the actual
configuration. On the other hand, by the Bayesian paradigm,
the prior beliefs must carry increased weight if the observed
data is sufficiently noisy to induce ambiguity. In such noisy
scenarios, the resulting posterior is a blend of the prior and
the observed data resulting in the suggestion of a number of
plausible configurations (i.e., the posterior would assume a
multi-modal form with each distinct mode corresponding to a
probable configuration).

We illustrate effects of the degree of noise in Figures 1
through 4. Three general noise levels for measured
displacements are considered: low noise as represented by
_ = 0.01, i.e. a 1% noise to signal ratio; medium noise _ =
0.05; and high noise _ = 0.10. In Figures 1 and 2 the actual
simulated configuration has a single flawed element, namely
element number 3 of abnormal type 2. In Figures 3 and 4 the
actual simulated configuration has two flawed elements,
namely a type 2 flawed element at position 3 and a type 1
flawed element at position 4.



These and subsequent figures offer a summary three-
dimensional portrayal of the posterior distribution. Recall that
there are N = 201 possible configurations for a single beam
with 10 elements and 2 abnormal flaw types, assuming there
are at most two flawed elements in the beam. Each figure
shows 56 coordinates, one which represents the zero flaw
case, 10 which represent the different flaw locations for the
one flaw case, and 45 which represent the different flaw
location pairs for the two flaw case. The leftmost corner
position represents the zero flaw case. The 10 coordinates
along the foreground diagonal to the right of the zero flaw
corner position represent the 10 possible single flaw element
locations. For example, the coordinate in Figure 1 with the
large cone represents a single flaw located at element
number 3. The 45 coordinates beyond the foreground
diagonal represent the 45 possible flaw location pairs. For
example, the coordinate in Figure 3, low noise, with the large
cone represents the situation of flawed elements located at
position numbers 3 and 4.

The coordinates embody all the possible abnormal flaw
types for their respective flaw locations. At each coordinate
is a cone whose height equals the total posterior probability,
expressed as a percentage, for the configurations
associated with the designated flaw location(s). Thus in
Figure 1 with low noise we see a cone with height of 100 at
the coordinate representing a single flaw at element number
3. This tells us that the posterior distribution has apportioned
probability one between the configurations (flaw location,
flaw type) = (3,1) and (3, 2). In fact, the posterior has
correctly placed probability one at (3, 2) and probability zero
at (3, 1) (and everywhere else for that matter). We have
decided to sacrifice resolution in depicting uncertainty
among abnormal stiffness types in order to have a concise
coordinate base. Generally, we have observed that if there is
any significant posterior probability at all, it is concentrated at
only one of the flaw type possibilities. However, in high noise
scenarios, there have been a few cases in which the
significant posterior probability at a particular location
description has been spread between two different stiffness
combinations. In such situations our three-dimensional
rendering is admittedly inadequate, and it would be
necessary to consult our complete simulation results to
obtain sufficient detail to fully characterize the posterior.

The results displayed in Figure 1 demonstrate the
overwhelming effectiveness of the Engine algorithm,
regardless of the degree of noise, when the prior favors the
truth, in this case the fact that the beam contains exactly one
flawed element. The prior used here is characterized by _ =
(_0, _1, _2) = (0.1, 0.8, 0.1). The posterior has probability
essentially unity for the actual configuration, (flaw location,
flaw type) = (3, 2), with small amounts of probability placed
at two flaw configurations which include (3, 2). For example,
the medium noise case (_ = 0.05) posterior distribution puts
0.98 probability at the (actual) one flaw configuration (3, 2),
puts probability 0.01 at the two flaw configuration {(3, 2), (10,
1)}, and smears the remaining 0.01 probability among a
broad collection of two flaw configurations.
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Figure 1. The effect of noise on the posterior distribution for
a one flaw scenario in which the prior favors one flaw. The
flawed element is at position 3. The noise levels are _ =
0.01, 0.05, and 0.10. Note that in all cases the posterior
distribution correctly locates the true state.

In Figure 2, we see the effect of employing a prior which
favors configurations contrary to the truth. Once again the
one flaw configuration (3, 2) represents truth, but now the
assumed prior distribution favors configurations of two flaws:
_ = (_0, _1, _2) = (0.02, 0.23, 0.75). The observed data in this
scenario is not sufficiently compelling to dismiss some two
flaw configurations. The Bayesian paradigm conducts a
competition between observed data and prior beliefs. The
noisier the data, the smaller is its influence in offsetting the
strength of the prior. At each noise level in this example, the
greatest probability is placed at the actual configuration, (3,
2). In addition, there is significant probability placed at a
number of two flaw configurations which include (3, 2). If this
were a real-life application, we would conclude that there is
clearly a flaw of type 2 at element 3. Moreover, there could
be an additional flaw at a location near the end of the beam
that might warrant further investigation.
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Figure 2. The effect of noise on the posterior distribution for
a one flaw scenario in which the prior favors two flaws. The
flawed element is at position 3. The noise levels are _ =
0.01, 0.05, and 0.10. Note that the posterior distribution



always indicates that a flaw is present at position 3, but for
higher levels of noise the presence of an additional second
flaw receives increasing amounts of probability.

Figures 3 and 4 deal with example scenarios in which the
actual number of flaws is two, namely the configuration {(3,
2), (4, 1)}. The results are similar to those of the single flaw
scenarios shown in Figures 1 and 2. The data overwhelms
the prior and the actual configuration is discovered in the low
noise setting, while there exists increased posterior
uncertainty for increased noise. The effect of a misdirected
prior, in this case a prior favoring a single flaw (Figure 4), is
to put significant posterior probability at a single flaw subset
of the truth, (3, 2) in the high noise case.
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Figure 3. The effect of noise on the posterior distribution for
a two flaw scenario in which the prior favors two flaws. The
flawed elements are at positions 3 and 4. The noise levels
are _ = 0.01, 0.05, and 0.10. Note that posterior becomes
increasingly diffuse in a neighborhood of the true
configuration as noise levels increase.

These examples essentially demonstrate that the Engine is
capable of determining the unknown actual flaw
configuration in the low noise situation, and will formulate a
posterior distribution in noisy situations that heavily supports
the actual configuration but which allows for some alternative
plausible configurations (near the true state), motivated to
some extent by one’s prior beliefs.
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Figure 4. The effect of noise on the posterior distribution for
a two flaw scenario in which the prior favors one flaw. The
flawed elements are at positions 3 and 4. The noise levels
are _ = 0.01, 0.05, and 0.10.

Missing Data. In real life applications, for reasons of
economy, convenience, accident, or design, data may not
necessarily be collected or available at each node. For the
Stochastic Engine, missing data does not in general present
an impasse. The posterior distribution can still be sampled
and estimated. The only drawback is that the posterior
distribution tends to display increased uncertainty as the
amount of missing data increases. This is not surprising, as
there is less information from which to specify a distribution.
In this situation, the calculation of the posterior by MCMC
sampling, using (10), merely requires a modification of the
likelihood function, (15), such that the product includes only
those terms for which measured data is available.
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Figure 5. The effect of missing data on the posterior
distribution for a low noise (_ = 0.01) two flaw scenario in
which the prior favors two flaws. The flawed elements are at
positions 3 and 4. The nodes without data are as noted.

We have examined the relationship between the quantity of
observed data and the quality of prediction, as measured by
the spread of the posterior distribution, for the two flawed
element scenarios depicted with full data in Figure 3 of the
previous section. We consider incomplete data of the form in
which the dm = 6 measurements (for the d = 2 dimensions
and m = 3 applied forces) at a particular node are either
complete or totally absent. Our results are shown in Figures
5, 6, and 7 for low, medium, and high noise, respectively. In
the low noise setting there is negligible loss of precision
when 4 or fewer of the 10 available nodes are not measured,
and respectable performance with 6 missing nodes. In the
medium and high noise settings, however, there is an
immediate degradation in the ability to correctly identify both
actual flaws: although flaw (location, type) = (3, 2) is
consistently and correctly identified, significant posterior
probability is placed at configurations away from the other
actual flaw, (4, 1).  Despite this confusion, for the most
degraded test case (i.e., 8 missing nodes and high noise __=
0.10), analysis of the posterior distribution reduces the space
of potential location configurations from 56 to 8,  an 85.7%
reduction in the space of potential hypotheses.



We have conducted alternative simulations with the same
amounts of missing data, but with different selections of
missing nodes. The results are virtually identical to those
shown here. It appears that the number of missing nodes is
more important than their actual locations.
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Figure 6. The effect of missing data on the posterior
distribution for a medium noise (_ = 0.05) two flaw scenario
in which the prior favors two flaws. The flawed elements are
at positions 3 and 4. The nodes without data are as noted.
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Figure 7. The effect of missing data on the posterior
distribution for a high noise (_ = 0.10) two flaw scenario in
which the prior favors two flaws. The flawed elements are at
positions 3 and 4. The nodes without data are as noted.

Conclusions
A stochastic simulation methodology for the identification of
mechanical and structural systems has been presented. This

methodology, called the Stochastic Engine, is based upon
Bayesian inference and is implemented via a Markov Chain
Monte Carlo algorithm. Using a finite element model of a
uniform fixed-free cantilever beam as the forward model, the
algorithm is shown to identify probable configurations of the
beam by determining the stiffness of each beam element
through an identification of its elastic modulus. This
identification is accomplished through the static deflection of
the linearly elastic beam. The system inputs are static forces
applied to the nodes of the beam. Each beam element may
have one of three elastic moduli values: a nominal or
‘unflawed’ value, or one of two ‘flawed’ values. Results show
that the methodology successfully calculates posterior
probability distributions across the possible configurations of
elastic moduli of the beam elements. This distributional
information in turn identifies the location of the ‘damage,’ i.e.,
identifying the elements with the ‘flawed’ elastic moduli.
Furthermore, the methodology was shown to be robust to
the presence of noise in the input and output data and in
cases where input and output data sets were incomplete.

In this paper, the output displacements were generated from
a ‘virtual’ experiment (numerical simulation). However it is
critical to note that measured response data, as input and/or
output, from a real system could be used and incorporated
into the finite-element forward model.
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